Abstract

A strategy for viral vaccine design is the use of conserved peptides to overcome the problem of sequence diversity. At present it is still unclear whether conserved peptide is safe as a candidate vaccine. We reported it here for the first time not only to highlight the biohazard issue and safety importance for viral peptide vaccine, but also to explore the effect of a fully conserved peptide on HBV replication within the carboxyl terminus of HBx. We synthesized the fully conserved peptide (CP) with nine residues, FVLGGCRHK. HBV-producing 2.2.15 cells were treated with or without 3.5 microM CP for 36 hours. Quantitative detection of viral DNA was performed by real-time PCR. HBV antigens were determined by enzyme-linked immunoadsorbent assay (ELISA). Quantitative analyses of p53 and Bax proteins were based on immunofluorescence. Flow cytometry was performed to detect cell cycle and apoptosis. Both extracellular and intracellular copies of HBV DNA per ml were significantly increased after incubation with 3.5 microM of CP. HBsAg and HBeAg in the cultured medium of CP-treatment cells were as abundant as untreated control cells. CP influenced negatively the extracellular viral gene products, and 3.5 microM CP could significantly inhibit intracellular HBsAg expression. In response to CP, intracellular HBeAg displayed an opposite pattern to that of HBsAg, and 3.5 microM CP could efficiently increase the level of intracellular HBeAg. Flow cytometric analyses exhibited no significant changes on cell cycle, apoptosis, p53 and Bax proteins in 2.2.15 cells with or without CP. Together with the results generated from the synthetic peptide, we address that the conserved region, a domain of HBx, may be responsible for modulating HBV replication. As conserved peptides from infectious microbes are used as immunogens to elicit immune responses, their latent biological hazard for human beings should be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.