Abstract

Typical rod-like viruses (the Tobacco Mosaic Virus (TMV) and the Bacteriophage M13) are biological nanostructures that couple a 1D mono-dispersed morphology with a precisely defined topology of surface spaced and orthogonal reactive domains. These biogenic scaffolds offer a unique alternative to synthetic nano-platforms for the assembly of functional molecules and materials. Spatially resolved 1D arrays of inorganic-organic hybrid domains can thus be obtained on viral nano-templates resulting in the functional arrangement of photo-triggers and catalytic sites with applications in light energy conversion and storage. Different synthetic strategies are herein highlighted depending on the building blocks and with a particular emphasis on the molecular design of viral-templated nano-interfaces holding great potential for the dream-goal of artificial photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.