Abstract
Significance: The glutathione peroxidase (GPx) family is recognized for its essential function in maintaining cellular redox balance and countering the overproduction of reactive oxygen species (ROS), a process intricately linked to the progression of various diseases including those spurred by viral infections. The modulation of GPx activity by viruses presents a critical juncture in disease pathogenesis, influencing cellular responses and the trajectory of infection-induced diseases. Recent Advances: Cutting-edge research has unveiled the GPx family's dynamic role in modulating viral pathogenesis. Notably, GPX4's pivotal function in regulating ferroptosis presents a novel avenue for the antiviral therapy. The discovery that selenium, an essential micronutrient for GPx activity, possesses antiviral properties has propelled us toward rethinking traditional treatment modalities. Critical Issues: Deciphering the intricate relationship between viral infections and GPx family members is paramount. Viral invasion can precipitate significant alterations in GPx function, influencing disease outcomes. The multifaceted nature of GPx activity during viral infections suggests that a deeper understanding of these interactions could yield novel insights into disease mechanisms, diagnostics, prognostics, and even chemotherapeutic resistance. Future Directions: This review aims to synthesize current knowledge on the impact of viral infections on GPx activity and expression and identify key advances. By elucidating the mechanisms through which GPx family members intersect with viral pathogenesis, we propose to uncover innovative therapeutic strategies that leverage the antioxidant properties of GPx to combat viral infections. The exploration of GPx as a therapeutic target and biomarker holds promise for the development of next-generation antiviral therapies. Antioxid. Redox Signal. 00, 000-000.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.