Abstract

Nucleoside and nucleotide reverse transcriptase inhibitors constitute the backbone of highly active antiretroviral therapy in the treatment of HIV-1 infection. One of the major obstacles in achieving the long-term efficacy of anti-HIV-1 therapy is the development of resistance. The advent of resistance mutations is usually accompanied by a change in viral replicative fitness. This review focuses on the most common nucleoside reverse transcriptase inhibitor-associated mutations and their effects on HIV-1 replicative fitness. Recent studies have explained the two main mechanisms of resistance to nucleoside reverse transcriptase inhibitors and their role in HIV-1 replicative fitness. The first involves mutations directly interfering with binding or incorporation and seems to impact replicative fitness more adversely than the second mechanism, which involves enhanced excision of the newly incorporated analogue. Further studies have helped explain the antagonistic effects between amino acid substitutions, K65R, L74V, M184V, and thymidine analogue mutations, showing how viral replicative fitness influences the evolution of thymidine analogue resistance pathways. Nucleoside reverse transcriptase inhibitor resistance mutations impact HIV-1 replicative fitness to a lesser extent than protease resistance mutations. The monitoring of viral replicative fitness may help in the management of HIV-1 infection in highly antiretroviral-experienced individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call