Abstract

The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.