Abstract

Life-long persistent herpesviruses carry "trans-inducers" to overcome the unusual codon usage of their glycoproteins for efficient expression. Strikingly, this "trans-inducibility" can be achieved by simply changing the codon-usage of acute virus glycoproteins to that of persistent herpesvirus glycoproteins with herpesviral trans-inducer. Here, we apply the "persistent viral codon-usage-trans-inducer" principle to SARS-CoV-2 Spike mRNA vaccine platform, in which the codon-usage of Spike is changed to that of Herpes Simplex Virus-1 (HSV-1) glycoprotein B (gB) with its "trans-inducer" ICP27. The HSVgB-ICP27-codon-optimized Spike mRNA vaccine induced markedly high antigen expression and stability, total IgG, neutralizing antibody, and T cell response, ultimately enhancing protection against lethal SARS-CoV-2 challenge. Moreover, the HSVgB- codon-optimized Delta (B.1.617.2) strain Spike mRNA vaccine provided significant enhancements in antigen expression and long-term protection against SARS-CoV-2 challenge. Thus, we report a novel persistent viral codon-usage-trans-inducer mRNA vaccine platform for enhanced antigen expression and long-term protection against lethal viral infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.