Abstract
Abstract A simple, innovative yet cycle amplification-free strategy was developed for highly sensitive fluorescence detection of activity of DNA methyltransferases and inhibitors, in which cDNA-based extension of potato virus X was used. Briefly, a partial hybrid double strand DNA (dsDNA) probe with the sequence of 5′-GATC-3′ was methylated and cleaved into four parts by dam MTase and DpnI. The newborn 5′-termini of the dsDNA complemented to 3′-end of viral cDNA and initiated dsDNA synthesis by DNA polymerase. The dsDNA product of about 6430-bp-long combined with SG and strong green fluorescence could be detected. However, in the absence of dam MTase, methylation/cleavage could not be initiated and viral cDNA was digested by Exonuclease I, and no fluorescence signal was observed. A correlation between the fluorescence intensity and dam MTase activity was obtained in a range from 0.025 to 5 U/mL of dam MTase, and the detection limit was 0.0087 U/mL. The inhibition study indicated that gentamicin and 5-flurouracil could inhibit the dam MTase activity with IC50 values of 2.24 μM and 2.75 μM, respectively. The proposed assay showed the potential as an accessible platform for simple, rapid and sensitive detection of DNA MTase activity and screening its inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.