Abstract

Sensory neuropathies are a frequent and dose-limiting complication resulting from treatment with cisplatin. Neurotrophin-3 (NT-3) promotes the survival of the large fiber sensory neurones that are impaired in cisplatin-induced neuropathy, and may therefore serve as a preventive agent. However, the short half-life of recombinant NT-3 after systemic administration limits its clinical applications. We compared two muscle-based gene transfer strategies for the continuous delivery of NT-3 to the bloodstream in an experimental model of cisplatin-induced neuropathy. Electrophysiological studies showed that the intramuscular injection of an adenovirus encoding NT-3 partially prevented the cisplatin-induced increase in sensory distal latencies. Similar effects were observed in cisplatin-treated mice that received intramuscular injections of a plasmid encoding NT-3 associated with in vivo electroporation. The two techniques were well tolerated and induced only slight muscle toxicity. Measurement of renal function, weight and survival showed that neither technique increased the toxicity of cisplatin. Our study shows that gene therapy, using either a viral or a non-viral vector, is a promising strategy for the prevention of cisplatin-induced neuropathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.