Abstract
Disrupted protein phosphorylation due to genetic variation is a widespread phenomenon that triggers oncogenic transformation of healthy cells. However, few relevant phosphorylation disruption events have been verified due to limited biological experimental methods. Because of the lack of reliable benchmark datasets, current bioinformatics methods primarily use sequence-based traits to study variant impact on phosphorylation (VIP). Here, we increased the number of experimentally supported VIP events from less than 30 to 740 by manually curating and reanalyzing multi-omics data from 916 patients provided by the Clinical Proteomic Tumor Analysis Consortium. To predict VIP events in cancer cells, we developed VIPpred, a machine learning method characterized by multidimensional features that exhibits robust performance across different cancer types. Our method provided a pan-cancer landscape of VIP events, which are enriched in cancer-related pathways and cancer driver genes. We found that variant-induced increases in phosphorylation events tend to inhibit the protein degradation of oncogenes and promote tumor suppressor protein degradation. Our work provides new insights into phosphorylation-related cancer biology as well as novel avenues for precision therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.