Abstract

Elucidating electrokinetic stability by which surface charges regulate toxins interaction with erythrocytes is crucial for understanding the cell functionality. Electrokinetic properties of human erythrocytes upon treatment of Vipoxin, phospholipase A2 (PLA2) and Vipoxin acidic component (VAC), isolated from Vipera ammodytes meridionalis venom were studied using particle microelectrophoresis. PLA2 and Vipoxin treatments alter the osmotic fragility of erythrocyte membranes. The increased stability of cells upon viper toxins is presented by the increased zeta potential of erythrocytes before sedimentation of cells during electric field applied preventing the aggregation of cells. Lipid peroxidation of low dose toxin-treated erythrocytes shows reduced LP products compared to untreated cells. The apparent proton efflux and conductivity assays are performed and the effectiveness PLA2 > Vipoxin>VAC is discussed. The reported results open perspectives to a further investigation of the electrokinetic properties of the membrane after viper toxins treatment to shed light on the molecular mechanisms driving the mechanisms of inflammation and neurodegenerative diseases

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.