Abstract

All data is not equally popular. Often, some portion of data is more frequently accessed than the rest, which causes a skew in popularity of the data items. Adapting to this skew can improve performance, and this topic has been studied extensively in the past for disk-based settings. In this work, we consider an in-memory data structure, namely hash table , and show how one can leverage the skew in popularity for higher performance. Hashing is a low-latency operation, sensitive to the effects of caching and code complexity, among other factors. These factors make learning in-the-loop challenging as the overhead of performing additional operations can have significant impact on performance. In this paper, we propose VIP hashing, a hash table method that uses lightweight mechanisms for learning the skew in popularity and adapting the hash table layout on the fly. These mechanisms are non-blocking, i.e, the hash table is operational at all times. The overhead is controlled by sensing changes in the popularity distribution to dynamically switch-on/off the mechanisms as needed. We ran extensive tests against a host of workloads generated by Wiscer , a homegrown benchmarking tool, and we find that VIP hashing improves performance in the presence of skew (22% increase in fetch operation throughput for a hash table with 1M keys under low skew) while adapting to insert and delete operations, and changing popularity distribution of keys on the fly. Our experiments on DuckDB show that VIP hashing reduces the end-to-end execution time of TPC-H query 9 by 20% under low skew.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.