Abstract

We found several studies that have used the aortic rings as an experimental model, mainly for the testing of new drugs or new therapies that try to reverse or prevent endothelial dysfunction or characterize its mechanism of action in a biological system, creating the knowledge necessary to obtain the treatment of those several diseases, where many of these treatments involve photobiomodulation therapies. We also found numerous wavelengths represented by different colors of LASER or LED in which frequently, the mechanism of action in biological systems is unknown. This study has as main objective to investigate the effects of the Violet LED Light (405 nm) by using isolated aortic rings, looking for nitric oxide (NO) release, and evaluating if Violet LED Light can modulate the superoxide dismutase (SOD) activity. We performed a vascular reactivity study in isolated aortic rings from normotensive rats with a single LED application. Besides it, the rings were pre-incubated with soluble guanylate cyclase (sGC) inhibitor or endothelial NO synthase inhibitor and subsequently underwent the application of the Violet LED. The cell viability and nitric oxide release in cell culture of human umbilical codon vein cells (HUVEC) were analyzed. In the vascular reactivity experiment, we observed a peak of vasodilation when applying light to the aortic rings. The soluble guanylate cyclase inhibitor abolished the relaxation induced by the Violet LED Light. However, the NO synthase inhibitor did not modify the Violet LED effect. In an isolated system, we verified that the Violet LED Light can increase SOD activity. Our results suggest that Violet LED Light induces vasodilation by a mechanism dependent on sGC activation, and not by NOS activation, and part of this effect could be due to the increase of SOD activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.