Abstract

The Shannon capacity of a graph G is the maximum asymptotic rate at which messages can be sent with zero probability of error through a noisy channel with confusability graph G. This extensively studied graph parameter disregards the fact that on atomic scales, nature behaves in line with quantum mechanics. Entanglement, arguably the most counterintuitive feature of the theory, turns out to be a useful resource for communication across noisy channels. Recently [Leung D, Mančinska L, Matthews W, Ozols M, Roy A (2012) Commun Math Phys 311:97-111], two examples of graphs were presented whose Shannon capacity is strictly less than the capacity attainable if the sender and receiver have entangled quantum systems. Here, we give natural, possibly infinite, families of graphs for which the entanglement-assisted capacity exceeds the Shannon capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.