Abstract

Kirchhoff’s law of thermal radiation imposes a constraint on photon-based energy harvesting processes since part of the incident energy flux is inevitably emitted back to the source. By breaking the reciprocity of the system, it is possible to overcome this restriction and improve the efficiency of energy harvesting. Here, we design and analyze a semitransparent emitter that fully absorbs normally incident energy from a given direction with zero backward and unity forward emissivity. The nearly ideal performance with wavelength-scale thickness is achieved due to the magneto-optical effect and the guided-mode resonance engineered in the emitter structure. We derive the general requirements for the nonreciprocal emitter using the temporal coupled mode theory and the symmetry considerations. Finally, we provide a realistic emitter design based on a photonic crystal slab consisting of a magnetic Weyl semimetal and silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.