Abstract

Herein, π-extended vinylidenedithiophenmethyleneoxindole (VTI) unit has been incorporated to polymeric conjugated backbones affording two donor-acceptor copolymers such as one-dimensional (1D) copolymer P1 and two-dimensional (2D) copolymer P2. The VTI unit owns S⋯OC intramolecular noncovalent interactions, which is favorable for acquiring planar conjugated backbone, thus leading to enhanced semiconducting properties. Both VTI-based copolymers exhibit broad absorption profiles in the visible region. The highest occupied molecular orbital/the lowest unoccupied molecular orbital energy levels of P1 and P2 are located at −5.21/–3.50 eV, and −5.33/–3.67 eV, respectively. Bulk heterojunction solar cell-based P2 and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) blend afforded an improved power conversion efficiency (PCE) value of 4.75%. These results show that the 2D VTI-based copolymers have greater application prospect than 1D ones, and highlight the great potential of VTI unit as a building blocks for constructing high performance polymer semiconductors for PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.