Abstract

So far, it remains a challenge to synthesize uranium adsorbents with robust stability, high adsorption capacity, excellent photocatalytic activity and easy regeneration. Herein, we report the first example of vinylene-linked covalent organic framework (Tp-TMT) with enhanced uranium adsorption through combined selective ligand binding, chemical reduction and photocatalytic reduction. The unique structure and excellent photocatalytic activity of Tp-TMT make it very suitable for photo-enhanced uranium adsorption through three synergistic mechanisms, thus exhibiting an outstanding uranium adsorption capacity (2362.4 mg g−1). In the dark, a large number of hydroxyl groups in the Tp-TMT framework serve as selective binding sites for uranium, and reduce part of U(VI) to U(IV), thereby greatly improving the adsorption capacity. Meanwhile, the synergistic effect of the triazine units and hydroxyl groups in the highly conjugated framework greatly decreases the optical band gap of Tp-TMT, and an additional U(VI) photocatalytic reduction process can occur under light irradiation, further increasing the adsorption kinetics and capacity. This work explored the structural and functional design of covalent organic frameworks for the adsorption and reduction of uranium in nuclear industry wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call