Abstract

Intramolecularcharge separation driving force and linkage chemistry between building blocks are critical factors for enhancing the photocatalytic performance of metal-covalent organic frameworks (MCOF) based photocatalyst. However, robust achieving both simultaneously has yet to be challenging despite ongoing efforts. Here we develop a fullyπ-conjugated vinylene-linked multivariate donor-π-acceptor MCOF (D-π-A, termed UJN-1)by integratingintegrating benzyl cyanides linkerwith multiple functional building blocks of electron-rich triphenylamine and electron-deficient copper-cyclic trinuclear units (Cu-CTUs)moieties, featuring with strongintramolecular charge separation driving force, extended conjugation degree of skeleton, and abundant active sites.The incorporation of Cu-CTUs acceptor with electron-withdrawing ability and concomitantly giant charge separation driving force can efficiently accelerate the photogenerated electrons transfer from triphenylamine to Cu-CTUs, revealing by experiments and theoretical calculations. Benefiting fromthe synergistically effect of D-π-A configuration and vinylene linkage, the highly-efficient charge spatial separationis achieved. Consequently, UJN-1 exhibits an excellent CO formation rate of 114.8 μmol g-1 in 4 h without any co-catalysts orsacrificial reagents under visible light, outperforming those analogous MCOFs with imine-linked (UJN-2, 28.9 μmol g-1) and vinylene-linked COF without Cu-CTU active sites (UJN-3, 50.0μmol g-1), emphasizing the role of charge separation driving force and linkage chemistry in designing novel COFs-based photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.