Abstract

Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2 CO3 ) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2 V-1 s-1 , as revealed by non-contact terahertz (THz) spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.