Abstract

The emerging polymerized small-molecule acceptors (PSMAs) with near-infrared (NIR) absorption have not only significantly boosted the power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) but have also exhibited great potential for sensitive NIR polymeric photodetectors (PPDs). However, there is no report regarding PSMAs with photo-response that can approach 1000 nm, which is an important criterion for applications in NIR-responsive all-PSCs and PPDs. Herein, by unidirectionally inserting vinylene segments into a selenophene-rich polymer backbone to improve the electron-donating strength and quinoidal character, an asymmetric PSMA, namely, PY3Se-1V, was developed, which showed an extensively red-shifted absorption approaching 1000 nm. The PBDB-T:PY3Se-1V-based binary all-PSCs achieve a decent PCE of 13.2% and a record-high photocurrent density of 25.9 mA cm-2 due to the significantly broadened photo-response and efficient photon-to-electron conversion. More encouragingly, narrowband photomultiplication (PM)-type PPDs based on poly(3-hexylthiophene-2,5-diyl) (P3HT):PY3Se-1V were developed, delivering an exceptionally high external quantum efficiency of 3680% and a responsivity of 28 A W-1 at an NIR peak of 960 nm under -50 V bias, which is reported for the first time in PM-type PPDs with a response approaching 1000 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call