Abstract

AbstractReadily available substituted phenols were coupled with pyruvate in buffer solution under atmospheric conditions to afford the corresponding para‐vinylphenol derivatives while releasing only one molecule of CO2 and water as the by‐products. This transformation was achieved by designing a biocatalytic system that combines three biocatalytic steps, namely the CC coupling of phenol and pyruvate in the presence of ammonia, which leads to the corresponding tyrosine derivative, followed by deamination and decarboxylation. The biocatalytic transformation proceeded with high regioselectivity and afforded exclusively the desired para products. This method thus represents an environmentally friendly approach for the direct vinylation of readily available 2‐, 3‐, or 2,3‐disubstituted phenols on preparative scale (0.5 mmol) that provides vinylphenols in high yields (65–83 %).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.