Abstract

Calcium carbide has been increasingly used as a sustainable, easy-to-handle, and low-cost feedstock in organic synthesis. Currently, methodologies of using calcium carbide as "solid acetylene" in synthesis are strictly limited to activation and reaction with X-H (X=C, N, O, S) bonds. Herein, a mild and transition-metal-free protocol was developed for the vinylation of epoxides and aryl ether linkage (β-O-4 lignin model compound) with calcium carbide through C-O bond cleavage, forming valuable vinyl ether products. Calcium carbide plays a vital role in the C-O bond activation and cleavage, and in providing acetylide source for the formation of vinylated products. These exciting results may provide new methodologies for organic synthesis and new insights toward lignin- or biomassrelated degradation to useful products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.