Abstract

AbstractPhotoswitchable molecules are highly requested compounds in various fields and, in particular, biomedicine. The urgent modern task of photopharmacology (an emerging approach in medicine) is the design of molecules that have both photoswitchable and bioactive properties. In this study, we present vinyl phosphonates – diene compounds with ethyl and isopropyl substituents on the phosphonate group. Both compounds demonstrated laser‐induced cis‐trans isomerization via a C=C bond after irradiation at 266 nm. The photoisomerization quantum yield was 17 % and 20 % for compounds with ethyl and isopropyl groups, respectively. The main advantage of the presented vinyl phosphonates is their bioactivity, unlike other photoswitchable molecules. Rather efficient butyrylcholinesterase inhibition by both presented compounds was demonstrated by IPC‐Micro analysis. The notable butyrylcholinesterase inhibition increase by 5 and 9 times was found for the vinyl phosphonates after laser irradiation. Such a sizeable difference in inhibition values for different isomeric states is a critical factor, which opens the way toward promising applications of vinyl phosphonates as photopharmacological agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call