Abstract

Acute kidney injury is a complex clinical disease that is associated with a high incidence of morbidity and mortality. Drug-induced acute kidney injury occurs in approximately 19-33% of hospitalized patients. Cisplatin, one of the most commonly used and effective chemotherapeutic drugs not only exerts anti-tumor effects but also causes renal toxicity damage, affecting its clinical application. Vinpocetine is an anti-inflammatory and antioxidant drug that predominately acts in the nervous system. In this study, we investigated the effects and mechanisms of vinpocetine in an animal model of cisplatin-induced acute renal injury. Rats were randomly divided into three experimental groups. During a 10-day trial, rats in the control group were administered a physiological saline solution; rats in the model group received a 5mg/kg intraperitoneal injection of cisplatin; and rats in the cisplatin + vinpocetine group received a 5mg/kg intraperitoneal injection of cisplatin as well as a 5mg/kg dose of vinpocetine via gavage. We observed that following cisplatin administration, the rats exhibited an increase in blood urea and creatinine levels as well as an increase in their inflammation and oxidative stress levels. In renal tissue, cisplatin caused the morphological changes typical of acute tubular injury. Vinpocetine reduced the cisplatin-induced acute renal function damage and tubular injury. In both in vivo and in vitro experiments, we found that vinpocetine can confer protection of rat renal cells by inhibiting the NF-κB signaling pathway and activating the Nrf2/ARE signaling pathway. Therefore, vinpocetine is a promising therapeutic drug for the treatment of cisplatin-induced acute kidney injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call