Abstract

Vinflunine (VFL) is a novel derivative of vinorelbine (NVB, Navelbine), which has shown markedly superior antitumor activity to NVB, in various experimental animal models. To establish whether this new Vinca alkaloid participates in P-glycoprotein (Pgp)-mediated multidrug resistance (MDR), VFL-resistant murine P388 cells (P388/VFL) were established in vivo and used in conjunction with the well established MDR P388/ADR subline, to define the in vivo resistance profile for VFL. P388/VFL cells proved cross-resistant to drugs implicated in MDR (other Vinca alkaloids, doxorubicin, etoposide), but not to campothecin or cisplatin and showed an increased expression of Pgp, without any detectable alterations in topoisomerase II or in glutathione metabolism. The P388/ADR cells proved cross-resistant to VFL both in vivo and in vitro, and this VFL resistance was efficiently modulated by verapamil in vitro. Cellular transport experiments with tritiated-VFL revealed differential uptake by P388 sensitive and P388/ADR resistant cells, comparable with data obtained using tritiated-NVB. In various in vitro models of human MDR tumor cells, whilst full sensitivity was retained in cells expressing alternative non-Pgp-mediated MDR mechanisms, cross resistance was identified in Pgp-overexpressing cells. Differences were, however, noted in terms of the drug resistance profiles relative to the other Vinca, with tumor cell lines proving generally least cross-resistant to VFL. Overall, these results suggest that VFL, like other Vinca alkaloids, participates in Pgp-mediated MDR, with tumor cells selected for resistance to VFL overexpressing Pgp, yet MDR tumor cell lines proved generally less cross resistant to VFL relative to the other Vinca alkaloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.