Abstract

AbstractSodium‐ion batteries (SIBs) are considered one of the most promising large‐scale and low‐cost energy storage systems due to the abundance and low price of sodium. Herein, hard carbons from a sustainable biomass feedstock (vine shoots) were synthesized via a simple two‐step carbonization process at different highest temperatures to be used as anodes in SIBs. The hard carbon produced at 1200 °C delivered the highest reversible capacity (270 mAh g−1 at 0.03 A g−1, with an acceptable initial coulombic efficiency of 71 %) since a suitable balance between the pseudographitic domains growth and the retention of microporosity, defects, and functional groups was achieved. A prominent cycling stability with a capacity retention of 97 % over 315 cycles was also attained. Comprehensive characterization unraveled a three‐stage sodium storage mechanism based on adsorption, intercalation, and filling of pores. A remarkable specific capacity underestimation of up to 38 % was also found when a two‐electrode half‐cell configuration was employed to measure the rate performance. To avoid this systematic error caused by the counter/reference electrode polarization, we strongly recommend the use of a three‐electrode setup or a full‐cell configuration to correctly evaluate the anode response at moderate and high current rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.