Abstract

Transformation progression of epithelial cells involves alterations in their morphology, polarity, and adhesive characteristics, all of which are associated with the loss and/or reorganization of actin structures. To identify the underlying mechanism of formation of the adhesion-dependent, circumferential actin network, the expression and localization of the actin binding and regulating proteins (ABPs), vinculin, VASP, and profilin were evaluated. Experimental depolarization of epithelial cells results in the loss of normal F-actin structures and the transient upregulation of vinculin, VASP, and profilin. This response is due to the loss of cell-cell, and not cell-substrate interactions, since cells that no longer express focal adhesions or stress fibers are still sensitive to changes in adhesion and manifest this in the altered profile of expression of these ABPs. Transient upregulation is dependent upon de novo protein synthesis, and protein kinase-, but not phosphatase-sensitive signal transduction pathway(s). Inhibition of the synthesis of these proteins is accompanied by dephosphorylation of the ribosomal S6 protein, but does not involve inhibition of the PI3-kinase-Akt-mTOR pathway. Constitutive expression of VASP results in altered cell morphology and adhesion and F-actin and vinculin structures. V12rac1 expressing epithelial cells are constitutively nonadhesive, malignantly transformed, and constitutively express high levels of these ABPs, with altered subcellular localizations. Transformation suppression is accompanied by the restoration of normal levels of the three ABPs, actin structures, adhesion, and epithelial morphology. Thus, vinculin, VASP, and profilin are coordinately regulated by signal transduction pathways that effect a translational response. Additionally, their expression profile maybe indicative of the adhesion and transformation status of epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.