Abstract

In epithelial cells, alpha-, beta-, and gamma-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. alpha-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell-matrix and cell-cell contacts, alpha-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell-cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and alpha-catenin. We show that alpha-catenin colocalizes at cell-cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to alpha-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2-4 x 10(-7) M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of alpha-catenin is involved in this interaction. Complex formation of vinculin and alpha-catenin was challenged in transfected cells. In PtK2 cells, intact alpha-catenin and alpha-catenin1-670, harboring the beta-catenin- binding site, were directed to cell-cell contacts. In contrast, alpha-catenin697-906 fragments were recruited to cell-cell contacts, focal adhesions, and stress fibers. Our results imply that in vivo alpha-catenin, like vinculin, is tightly regulated in its ligand binding activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call