Abstract

The advance of nanotechnology in drug delivery systems has allowed central nervous system (CNS) accumulation of several anti-tumor agents with poor brain penetration but also lead to concerns about central neurotoxicity. Vincristine is commonly administered as an effective anti-brain tumor drug. It is known to act by interfering with microtubule dynamics, but models for detailed elucidation of its mechanism of neurotoxicity are limited. Here we generated cerebral organoids using human-induced pluripotent stem cells (iPSCs) for evaluation of neurotoxic mechanisms. Cerebral organoids were treated with different concentrations of vincristine for 48 h and their expansion was measured. We also assayed various cell markers, microtubule associated proteins, and matrix metalloproteinases (MMP) in cerebral organoids. After treatment for 48 h, we observed dose-dependent neurotoxicity, including reduced neuron and astrocyte numbers at high concentration. Vincristine treatment also impaired the microtubule-associated protein tubulin, and fibronectin, and downregulated MMP10 activity. Further analysis using the STRING database found that, both MMP10 and fibronectin bind with MMP9 experimentally, and text-mining indicated an interaction between MMP10 and fibronectin. Our organoid model system allowed quantitative investigation of the effects of vincristine treatment. Our findings indicated vincristine exhibited dose-dependent neurotoxicity, inhibited fibronectin, tubulin, and MMP10 expression in cerebral organoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.