Abstract
The ability of a class of C-20' modified vinca alkaloid congeners to induce tubulin spiral formation was investigated relative to their ability to inhibit microtubule assembly, their cytotoxicity against a leukemic cell line, L1210, and their measured and calculated partition coefficients. These studies were prompted by the observation that the energetics of vinca alkaloid-induced tubulin spiral polymers, or spiraling potential, is inversely related to their clinical dosage and are aimed at the long-term goal of developing the ability to predict the cytotoxic and antineoplastic properties of antimitotic drugs. We demonstrate here that vinca-induced tubulin-spiraling potential is significantly correlated with cytotoxicity against L1210 cells. This is consistent with the size of spirals formed being proportional to the relaxation time for polymer redistribution, the lifetime of cell retention, and effects on microtubule ends and dynamics. Spiraling potential also correlates with calculated but not measured partition coefficients. Surprisingly, spiraling potential does not correlate with the ability to inhibit microtubule formation with purified tubulin or microtubule protein. For the set of C-20' modified compounds studied, the largest inhibitory effects on spiraling potential and cytotoxicity are caused by multiple sites of halogen (-F, -Cl) substitution with the introduction of increased rigidity in the ring. This suggests the C-20' position interacts with a hydrogen bond acceptor or an electrophilic region on the protein that electrostatically disfavors halogen substitutions. These studies are discussed in terms of the cellular mode of action of antimitotic drugs, particularly the importance of microtubule dynamics during mitosis and the factors that regulate those dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.