Abstract

The Escherichia coli cell division protein FtsZ was expressed in Chinese hamster ovary cells, where it formed a striking array of dots that were independent of the mammalian cytoskeleton. Although FtsZ appears to be a bacterial homolog of tubulin, its expression had no detectable effects on the microtubule network or cell growth. However, treatment of the cells with vinblastine at concentrations that caused microtubule disassembly rapidly induced a network of FtsZ filaments that grew from and connected the dots, suggesting that the dots are an active storage form of FtsZ. Cells producing FtsZ also exhibited vinblastine- and calcium-resistant tubulin polymers that colocalized with the FtsZ network. The FtsZ polymers could be selectively disassembled, indicating that the two proteins were not copolymerized. The vinblastine effects were readily reversible by washing out the drug or by treating the cells with the vinblastine competitor, maytansine. These results demonstrate that FtsZ assembly can occur in the absence of bacterial chaperones or cofactors, that FtsZ and tubulin do not copolymerize, and that tubulin-vinblastine complexes have an enhanced ability to interact with FtsZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call