Abstract

Bioenergy crops, such as sugarcane, have the potential to mitigate greenhouse gas emissions through fossil fuel substitution. However, increased sugarcane propagation and recent management changes have raised concerns that these practices may deplete soil carbon (C) stocks, thereby limiting the net greenhouse gas benefit. In this study, we use both a measured and modelled approach to evaluate the impacts of two common sugarcane management practices on soil C sequestration potential in Brazil. We explore how transitions from conventional (mineral fertiliser/burning) to improved (vinasse application/unburned) practices influence soil C stocks in total and in physically fractionated soil down to one metre. Results suggest that vinasse application leads to an accumulation of soil C of 0.55 Mg ha−1yr−1 at 0–30 cm depth and applying unburned management led to gains of ∼0.7 Mg ha−1yr−1 at 30–60 cm depth. Soil C concentration in the Silt+Clay fraction of topsoil (0–20 cm) showed higher C content in unburned management but it did not differ under vinasse application. The CENTURY model was used to simulate the consequences of management changes beyond the temporal extent of the measurements. Simulations indicated that vinasse was not the key factor driving increases in soil C stocks but its application may be the most readily available practice to prevent the soil C losses under burned management. Furthermore, cessation of burning may increase topsoil C by 40% after ∼50 years. These are the first data comparing different sugarcane management transitions within a single area. Our findings indicate that both vinasse application and the cessation of burning can play an important role in reducing the time required for sugarcane ethanol production to reach a net C benefit (payback time).

Highlights

  • Sugarcane has the potential to contribute significantly towards a renewable energy future (Goldemberg et al, 2014; OECD/FAO, 2013)

  • The pairings were deemed suitable since they had similar soil type, climatic conditions and a reference sugarcane management area to pair with the new management approach, a no vinasse-to-vinasse (NV-to-V) and a burnedto-unburned (B-to-UB) comparison

  • The differences in soil C stocks between vinasse management practices were significant at shallow depths in the soil profile (Fig. 2)

Read more

Summary

Introduction

Sugarcane has the potential to contribute significantly towards a renewable energy future (Goldemberg et al, 2014; OECD/FAO, 2013). There are, concerns that bioenergy-driven land use change (LUC) may adversely impact soil carbon (C) stocks (Guo & Gifford, 2002) and increase the amount of time required before a biofuel feedstock can achieve a net positive GHG benefit when displacing fossil fuels (i.e., its payback time) (Fargione et al, 2008; Mello et al, 2014). With the expected increase in sugarcane use as a biofuel in the near future (Goldemberg et al, 2014) the current and expanding sugarcane areas have received considerable attention regarding two key management practices: (1) the fate of by-products from the ethanol cycle to the field (e.g., vinasse); and (2) reduced biomass removal due to a transition from traditional pre-harvest burning to an unburned management

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.