Abstract

The Australian legume species Viminaria juncea forms both cluster roots and mycorrhizal associations. The aim of this study was to identify if these root specializations are expressed at differential supplies of phosphorus (P) and at different shoot P concentrations [P]. Seedlings were planted in sand and provided with a mycorrhizal inoculum and basal nutrients plus one of 21 P treatments, ranging from 0 to 50 mg P kg(-1) dry soil. Plants were harvested after 12 weeks, and roots, shoots and cluster roots were measured for length and fresh and dry weight. The number of cluster roots, the percentage of mycorrhizal colonization, and shoot [P] were determined. Shoot biomass accumulation increased with increasing P supply until a shoot dry weight of 3 g was reached at a P supply of approx. 27·5 mg P kg(-1) dry soil. Neither cluster-root formation nor mycorrhizal colonization was fully suppressed at the highest P supply. Most intriguingly, shoot [P] did not differ across treatments, with an average of 1·4 mg P kg(-1) shoot dry weight. The almost constant shoot [P] in V. juncea over the very wide range of P supplies is, to our knowledge, unprecedented. To maintain these stable values, this species down-regulates its growth rate when no P is supplied; conversely, it down-regulates its P-uptake capacity very tightly at the highest P supplies, when its maximum growth rate has been reached. It is proposed that the persistence of cluster roots and mycorrhizal colonization up to the highest P treatments is a consequence of its tightly controlled shoot [P]. This unusual P physiology of V. juncea is surmised to be related to the habitat of this N2-fixing species. Water and nutrients are available at a low but steady supply for most of the year, negating the need for storage of P which would be metabolically costly and be at the expense of metabolic energy and P available for symbiotic N2 fixation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.