Abstract

Our previous study investigated the levels of soluble growth factors in the conditioned media of bone marrow-derived mesenchymal stem cells (BMSCs) pre-treated with thiazolidinedione solutions. The present study aimed to investigate the complex intracellular proteins extracted from BMSCs pre-treated with pioglitazone and/or rosiglitazone using proteomics. The proliferative effect of the identified protein on MCF-7 cells that interacted non-adhesively with BMSCs pre-treated with pioglitazone and/or rosiglitazone was evaluated using cell culture inserts and conditioned media. The mRNA expression of proliferation and lipid accumulation markers was also evaluated in the interacted MCF-7 cells by reverse transcription-quantitative PCR. Finally, the correlation between the identified protein and fibroblast growth factor 4 (FGF-4) proteinin the conditioned media of the pre-treated BMSCs was evaluated by ELISA. The present study identified vimentin as the specific protein among the complex intracellular proteins that likely plays a role in MCF-7 cell proliferation when the breast cancer cells interacted non-adhesively with BMSCs pre-treated with a combination of pioglitazone and rosiglitazone. The inhibition of this protein promoted the proliferation of MCF-7 cells when the breast cancer cells interacted with pre-treated BMSCs. Gene expression analysis indicated that pre-treatment of BMSCs with a combination ofpioglitazone and rosiglitazone decreased the mRNA expression of Ki67 and proliferating cell nuclear antigen in MCF-7 cells. The pre-treatment did not induce mRNA expression of PPARγ, which is a sign of lipid accumulation. The level of vimentin protein was also associated with the FGF-4 protein expression level in the conditioned media of the pre-treated BMSCs. Bioinformatics analysis revealed that vimentin regulated the expression of FGF-4 through its interaction with SRY-box 2 and POU class 5 homeobox 1. The present study identified a novel intracellular protein that may represent the promising target in pre-treated BMSCs to decrease the proliferation of breast cancer MCF-7 cells for human health and wellness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call