Abstract

The effects of cGMP-dependent protein kinase (G-kinase), a major cellular receptor of cGMP, were investigated in activated human neutrophils. Immunocytochemistry demonstrated that G-kinase translocated from a diffuse localization in the cytoplasm to the cytoskeleton and nucleus after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), and transiently co-localized with the intermediate filament protein, vimentin. During this time period, the most remarkable co-localization of G-kinase and vimentin was observed between 1-2.5 min stimulation with fMLP. At that time co-localization of G-kinase and vimentin was predominantly confined to filaments which extended from regions adjacent to the nucleus into the uropod. Distinctive localization for only G-kinase was observed at the microtubule organizing center and euchromatin of the nucleus. The filamentous staining pattern for G-kinase and vimentin was enhanced in the presence of 8-Br-cGMP. Coincident with co-localization of G-kinase and vimentin in adherent neutrophils was a transient increase in cGMP levels and an increase in the phosphorylation of vimentin in fMLP-stimulated cells. The increase in cGMP levels was dependent upon cell adherence, was enhanced by preincubating neutrophils with L-arginine (the precursor for nitric oxide synthesis), and attenuated with the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. Phosphorylation of vimentin in the fMLP-stimulated neutrophil was observed in the presence or absence of exogenous cGMP, although in the presence of low concentrations of 8-Br-cGMP a more rapid phosphorylation of vimentin was observed that correlated with the enhanced co-localization of G-kinase and vimentin. Phosphorylation of vimentin was not observed in non-activated cells treated with 8-Br-cGMP, suggesting that phosphorylation only occurs when G-kinase is co-localized with vimentin. The presence of the protein kinase C inhibitors, staurosporine or H-7, did not inhibit vimentin phosphorylation during fMLP stimulation, while 8-Br-cGMP enhanced phosphorylation in fMLP-treated cells. This suggests that neither protein kinase C nor cAMP-dependent protein kinase catalyze the phosphorylation of vimentin in neutrophils activated by fMLP. These results indicate that vimentin and G-kinase are co-localized in neutrophils and that vimentin is phosphorylated by G-kinase in response to the co-localization of the two proteins. A model for the targeting of G-kinase and vimentin is presented which hypothesizes that the transient redistribution of G-kinase may regulate neutrophil activation.

Highlights

  • The effects of cGMP-dependent protein kinase (G- ing fMLP stimulation, while 8-Br-cGMP enhanced kinase), a major cellular receptor of cGMP, were in- phosphorylation in fMLP-treated cells

  • We demonstrate that G-kinase translocates from a diffuse state in thecytoplasm to a highly co-localized distribution with vimentin in fMLP-stimulated neutrophils

  • Cell samples were washed twice with time that cGMP levels transiently increase in adherent cells GBS, adhered in GBS with 10% serum, and preincubated for 15 min stimulated with fMLP and thatthese increases correlate with the activation of G-kinase that is co-localized with vimentin

Read more

Summary

Introduction

The effects of cGMP-dependent protein kinase (G- ing fMLP stimulation, while 8-Br-cGMP enhanced kinase), a major cellular receptor of cGMP, were in- phosphorylation in fMLP-treated cells. Cell samples were washed twice with time that cGMP levels transiently increase in adherent cells GBS, adhered in GBS with 10% serum, and preincubated for 15 min stimulated with fMLP and thatthese increases correlate with the activation of G-kinase that is co-localized with vimentin.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.