Abstract
Both the cytoskeletal intermediate filaments (IFs) and cytoplasmic caveolae contribute to active processes such as cell migration, morphogenesis and vesicular trafficking, but the interplay between these two systems has remained elusive. Here, we find that vimentin and nestin IFs interact with caveolae central component caveolin-1 (CAV-1) and importantly, restrain the intracellular trafficking of CAV-1 positive vesicles by serving as a physical barrier. Consequently, CAV-1 vesicles show less density and mobility in vimentin IFs enriched region, which is a substrate stiffness independent process. Moreover, depletion of vimentin IFs releases the slow movement proportion of CAV-1 positive vesicles and thus increases their cytoplasmic dynamics, whereas the expression of caveolae-associated protein CAV-1, CAV-2 and cavin-1 were unaffected. Collectively, these results reveal a negative role of IFs in regulating the trafficking of intracellular CAV-1 vesicles in live cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.