Abstract

VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC) cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5′-aza-2′-deoxycytidine (5′-Aza-dC). Trichostatin A (TSA), a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples) showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001). VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients.

Highlights

  • Visinin-like protein-1 (VILIP-1), a member of the visininrecoverin neuronal calcium-sensor protein family, has an important role in regulating cAMP levels, cell signaling and differentiation in central nervous system

  • Except for a few tumor cell lines from central nervous system and colon, VILIP-1 protein was commonly absent in human cancer cell lines, including those derived from prostate, lung, ovarian and renal tumors as well as those from melanoma and leukemia (Figure 1)

  • We focused on lung-derived cells to further examine VILIP-1 protein expression in normal human bronchial epithelial cells (NHBE) and a total of 12 non-small cell lung cancer (NCSLC) cell lines (Figure 2A)

Read more

Summary

Introduction

Visinin-like protein-1 (VILIP-1), a member of the visininrecoverin neuronal calcium-sensor protein family, has an important role in regulating cAMP levels, cell signaling and differentiation in central nervous system. Our group identified VILIP-1 to be differentially expressed in chemically-induced murine skin cancer cells of high and low invasive ability by differential display, indicating a new function of VILIP-1 in cancer [3,4]. VILIP-1 was expressed in normal basal epidermal keratinocytes, while its expression was markedly decreased or undetectable in aggressive and invasive squamous cell carcinoma (SCC). Less aggressive SCCs showed expression of VILIP-1 protein. Ectopic overexpression of VILIP-1 resulted in a cAMP-mediated decrease of in vivo and in vitro growth and invasiveness of SCC cells [3]. Reduced invasiveness and elevated cAMP levels were accompanied by decreased MMP-9 as well as lowered RhoA activity [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call