Abstract
Abstract An implementation approach using the ocean color index (OCI)-based chlorophyll-a (Chl-a) algorithm for the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) has been developed. The OCI Chl-a algorithm for satellite-derived Chl-a data was originally developed by Hu, Lee, and Franz (2012) (J. Geophys. Res., 117, C01011, doi: 01010.01029/02011JC007395) for the Moderate Resolution Imaging Spectroradiometer (MODIS). It uses two Chl-a algorithms, i.e., the color index (CI)-based (reflectance difference-based) algorithm for oligotrophic waters and the usual ocean chlorophyll-type (OCx)-based (reflectance ratio-based) algorithm (e.g., OC3M for MODIS and OC3V for VIIRS), and merges the two algorithms for different Chl-a range applications (named OCI algorithm). In this study, we use the in situ Marine Optical Buoy (MOBY) optics data to demonstrate conclusively that using the CI-based Chl-a algorithm can significantly improve VIIRS Chl-a data over oligotrophic waters with much reduced data noise from instrument calibration and the imperfect atmospheric correction. Using the VIIRS-measured global Chl-a data derived from the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system, we have developed the CI-based algorithm specifically for VIIRS, and further improved the two Chl-a algorithms merging method using the blue-green reflectance ratio values. Extensive evaluation results show that the new OCI Chl-a algorithm for VIIRS can produce consistent Chl-a data compared with those from the OC3V algorithm. In particular, the data transition between the CI-based and OC3V-based Chl-a algorithm is quite smooth, and there are no obvious discontinuities in VIIRS-derived Chl-a data. The new OCI-based Chl-a algorithm has been implemented in MSL12 for routine production of VIIRS global Chl-a data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.