Abstract
Spectral cameras with integrated thin-film Fabry-Perot filters have become increasingly important in many applications. These applications often require the detection of spectral features at specific wavelengths or to quantify small variations in the spectrum. This can be challenging since thin-film filters are sensitive to the angle of incidence of the light. In prior work, we modeled and corrected for the distribution of incident angles for an ideal finite aperture. Many real lenses, however, experience vignetting. Therefore, in this paper, we generalize our model to the more common case of a vignetted aperture, which changes the distribution of incident angles. We propose a practical method to estimate the model parameters and correct undesired shifts in measured spectra. This is experimentally validated for a lens mounted on a visible-to-near-infrared spectral camera.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.