Abstract
Brain-computer interface (BCI) is a communication system that allows a direct connection between the human brain and external devices. With the application of BCI, it is important to estimate vigilance for BCI users. In order to investigate the vigilance changes of the subjects during BCI tasks and develop a multimodal method to estimate the vigilance level, a high-speed 4-target BCI system for cursor control was built based on steady-state visual evoked potential (SSVEP). 18 participants were recruited and underwent a 90-min continuous cursor-control BCI task, when electroencephalogram (EEG), electrooculogram (EOG), electrocardiography (ECG), and electrodermal activity (EDA) were recorded simultaneously. Then, we extracted features from the multimodal signals and applied regression models to estimate vigilance. Experimental results showed that the differential entropy (DE) feature could effectively reflect the change of vigilance. The vigilance estimation method, which integrates DE and EOG features into the support vector regression (SVR) model, achieved a better performance than the compared methods. These results demonstrate the feasibility of our methods for estimating vigilance levels in BCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.