Abstract

GABAergic inhibitory neurons, through their molecular, anatomic, and physiological diversity, provide a substrate for the modulation of ongoing cortical circuit activity throughout the sleep/wake cycle. Here, we investigated neuronal activity dynamics of parvalbumin (PV), vasoactive intestinal polypeptide (VIP), and somatostatin (SST) neurons in naturally sleeping head-restrained mice at the level of layer 2/3 of the primary somatosensory barrel cortex of mice. Through calcium imaging and targeted single-unit loose-patch or whole-cell recordings, we found that PV action potential firing activity was largest during both rapid eye movement (REM) and nonrapid eye movement (NREM) sleep stages, that VIP neurons were most active during REM sleep, and that the overall activity of SST neurons remained stable throughout the sleep/wake cycle. Analysis of neuronal activity dynamics uncovered rapid decreases in PV cell firing at wake onset followed by a progressive recovery during wake. Simultaneous local field potential (LFP) recordings further revealed that except for SST neurons, a large proportion of neurons were modulated by ongoing delta and theta oscillations. During NREM sleep spindles, PV and SST activity increased and decreased, respectively. Finally, we uncovered the presence of whisking behavior in mice during REM sleep and show that the activity of VIP and SST is differentially modulated during awake and sleeping whisking bouts, which may provide a neuronal substrate for internal brain representations occurring during sleep.SIGNIFICANCE STATEMENT In the sensory cortex, the balance between excitation and inhibition is believed to be highly dynamic throughout the sleep/wake cycle, shaping the response of cortical circuits to external stimuli while allowing the formation of newly encoded memory. Using in vivo two-photon calcium imaging or targeted single-unit recordings combined with LFP recordings, we describe the vigilance state and whisking-behavior-dependent activity of excitatory pyramidal and inhibitory GABAergic neurons in the supragranular layers of mouse somatosensory cortex. Interneuronal activity was found to be differentially modulated by ongoing delta and theta waves, sleep spindles, and a novel type of whisking observed during REM sleep, potentially providing a neuronal substrate for internal brain representations occurring during sleep.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.