Abstract

An estimated 17% of cancers worldwide are associated with infectious causes. The extent and biological significance of viral presence/infection in actual tumor samples is generally unknown but could be measured using human transcriptome (RNA-seq) data from tumor samples. We present an open source bioinformatics pipeline viGEN, which allows for not only the detection and quantification of viral RNA, but also variants in the viral transcripts. The pipeline includes 4 major modules: The first module aligns and filter out human RNA sequences; the second module maps and count (remaining un-aligned) reads against reference genomes of all known and sequenced human viruses; the third module quantifies read counts at the individual viral-gene level thus allowing for downstream differential expression analysis of viral genes between case and controls groups. The fourth module calls variants in these viruses. To the best of our knowledge, there are no publicly available pipelines or packages that would provide this type of complete analysis in one open source package. In this paper, we applied the viGEN pipeline to two case studies. We first demonstrate the working of our pipeline on a large public dataset, the TCGA cervical cancer cohort. In the second case study, we performed an in-depth analysis on a small focused study of TCGA liver cancer patients. In the latter cohort, we performed viral-gene quantification, viral-variant extraction and survival analysis. This allowed us to find differentially expressed viral-transcripts and viral-variants between the groups of patients, and connect them to clinical outcome. From our analyses, we show that we were able to successfully detect the human papilloma virus among the TCGA cervical cancer patients. We compared the viGEN pipeline with two metagenomics tools and demonstrate similar sensitivity/specificity. We were also able to quantify viral-transcripts and extract viral-variants using the liver cancer dataset. The results presented corresponded with published literature in terms of rate of detection, and impact of several known variants of HBV genome. This pipeline is generalizable, and can be used to provide novel biological insights into microbial infections in complex diseases and tumorigeneses. Our viral pipeline could be used in conjunction with additional type of immuno-oncology analysis based on RNA-seq data of host RNA for cancer immunology applications. The source code, with example data and tutorial is available at: https://github.com/ICBI/viGEN/.

Highlights

  • An estimated 17% of cancers worldwide are associated with infectious causes

  • Among the 304 cervical cancer patients, 22 patients had virus detection confirmed by Polymerase Chain Reaction (PCR) or other lab methods and made available through the clinical data

  • human papilloma viruses (HPVs)-16 was detected in 53% of the samples, HPV-18 in 13% of the samples and HPV-26 in 0.3 % of the samples (Figure 2)

Read more

Summary

Introduction

An estimated 17% of cancers worldwide are associated with infectious causes. These infectious agents include viruses, bacteria, parasites and other microbes. Examples of viruses include human papilloma viruses (HPVs) in cervical cancer, epstein-Barr virus (EBV) in nasopharyngeal cancer, hepatitis B and C in liver cancer (HBV and HCV), human herpes virus 8 (HHV-8) in Kaposi sarcoma (KS); human T-lymphotrophic virus-1 (HTLV-1) in adult T cell lymphocytic leukemia (ATL) and non-Hodgkin lymphoma; merkel cell polyomavirus (MCV) in Merkel cell carcinoma (ACS, 2007). Bacteria such as Helicobacter pylori have been implicated in stomach cancer. Detection and characterization of these infectious agents in tumor samples can give us better insights into disease mechanisms and their treatment (Hausen, 2000)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.