Abstract

Exploring human mobility is essential for urban applications. To observe human mobility, various data-driven techniques based on different data sources, such as cell phone and transportation data, have been proposed. This paper investigates human mobility through the emerging vehicular Internet service on public bus system. The key idea is that if a passenger is using WiFi on the bus or his/her WiFi device is activated in the background, we know that the passenger is traveling on the bus. By fusing the network events generated by WiFi devices with the data from the automatic fare collection (AFC) system, and the bus GPS information, we exploit not only the origin but also the destination of a passenger. Based on this idea, we develop a novel system called ViFi-MobiScanner which consists of about 4, 800 mobile routers distributed in a city with 1, 992 KM <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> urban area. We develop an ID matching algorithm that matches part of the users' network identities and their smartcard identities anonymously. As a result, we have built a set of labeled samples with the reference of observation from smartcard data and use them to train a classifier to infer users mobility from their network activities. We evaluate ViFi-MobiScanner with both field tests and collected datasets associated with 168 million network events, 3.6 million trips, and 1.4 million users. The evaluation results show that ViFi-MobiScanner increases the observability on the passengers and trips by about 53.9% and 48.1% over the smartcard observations. ViFi-MobiScanner also helps to estimate the passengers' destination that cannot be observed by current smartcard systems and the estimation can be accomplished in minutes. Thus it expands the observability of mobility in object, temporal and spatial dimensions and provides unique insights on human mobility at metropolitan scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.