Abstract

Modern day computing paradigms foster for a huge community of involved participants from almost the entire spectrum of human endeavour. For computing and data processing there are individual Computers, their Clusters, Grids, and, finally, the Clouds. For pure data communication there is the Internet, and for the Human-understandable Information Communication for example the World Wide Web. The rapid development of hand-held mobile devices with high computational capabilities and Internet connectivity enabled certain parts of Clouds to be “lowered” into the so called “thin clients”. This led to development of the Fog-Computing Paradigm as well as development of the Internet of Things (IoT) and Internet of Everything (IoE) concepts. However, the most significant amount of information processing all around us is done on the lowest possible computing level, outright connected to the physical environment and mostly directly controlling our human immediate surroundings. These “invisible” information processing devices we find in our car's motor, in the refrigerator, the gas boiler, air-conditioners, wending machines, musical instruments, radio-receivers, home entertainment systems, traffic-controls, theatres, lights, wood-burning stoves, and ubiquitously all over the industry and in industrial products. These devices, which are neither at the cloud/fog edge, nor even at the mobile edge, but rather at the physical edge of computing are the basis of the Dew Computing Paradigm. The merits of seamlessly integrating those “dew” devices into the Cloud — Fog — Dew Computing hierarchy are enormous, for individuals, the public and industrial sectors, the scientific community and the commercial sector, by bettering the physical and communicational, as well as the intellectual, immediate human environment. In the possibility of developing integrated home management/entertainment/maintenance systems, self-organising traffic-control systems, intelligent driver suggestion systems, coordinated building/car/traffic pollution control systems, real-time hospital systems with all patient and equipment status and control collaborating with the medical staff, fully consistent synaesthetic artistic performances including artists and independent individuals (“active public”) from wide apart, power distribution peek filtering, self-reorganisation and mutual cooperation systems based on informed behaviour of individual power consumption elements, emergency systems which cooperate with the town traffic, etc., etc., the Dew-Computing paradigm shows the way towards the Distributed Information Services Environment (DISE), and finally towards the present civilisation's aim of establishment of a Global Information Processing Environment (GIPE). It is therefore essential, through Research, Innovation and Development, to explore the realm of possibilities of Dew Computing, solve the basic problems of integration of the “dew” level with the higher level Dew-Fog-Cloud hierarchy, with special attention to the necessity of information (not only data) processing and communication, and demonstrate the viability and high effectiveness of the developed architecture in several areas of human endeavour through real life implementations. The present scientific and technological main objective is to provide the concepts, methods and proof-of-concept implementations that are moving Dew Computing from a theoretical/experimental concept to a validated technology. Finally, it will be necessary to define and standardise the basics of the Dew Computing Architecture, Language and Ontology, which is a necessity for the seamless integration of the emerging new Global Information Processing Architecture into the Fog and Cloud Paradigms, as a way towards the above mentioned civilisation goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call