Abstract
In this paper, we show how entropy maps can be used to guide an active observer along an optimal trajectory, by which the identity and pose of objects in the world can be inferred with confidence, while minimizing the amount of data that must be gathered. Specifically we consider the case of active object recognition where entropy maps are used to encode prior knowledge about the discriminability of objects as a function of viewing position. The paper describes how these maps are computed using optical flow signatures as a case study, and how a gaze-planning strategy can be formulated by using entropy minimization as a basis for choosing a next best view. Experimental results are presented which show the strategy's effectiveness for active object recognition using a single monochrome television camera.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.