Abstract

We have recently developed an electronic holography reconstruction system by tiling nine 4Kx2K liquid crystal on silicon (LCOS) panels seamlessly. Magnifying optical systems eliminate the gaps between LCOS panels by forming enlarged LCOS images on the system’s output lenses. A reduction optical system reduces the tiled LCOS images to the original size, returning to the original viewing zone angle. Since this system illuminates each LCOS panel through polarized beam splitters (PBS) from different distances, viewing-zone-angle expansion was difficult since it requires illumination of each LCOS panel from different angles. In this paper, we investigated viewing-zone-angle expansion of this system by integrating point light sources in the magnifying optical system. Three optical fibers illuminate a LCOS panel from different angles in time-sequential order, reconstructing three continuous viewing-zones. Full-color image reconstruction was realized by switching the laser source among R, G, and B colors. We propose a fan-shaped optical fiber arrangement to compensate for the offset of the illumination beam center from the LCOS panel center. We also propose a solution for high-order diffraction light interference by inserting electronic shutter windows in the reduction optical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call