Abstract

Tautomeric curcumin amorphous solid dispersions (Cur ASDs) formulated with various typical polymers (polyethylene glycol 6000 (PEG), polyvinylpyrrolidone K30 (PVP), Eudragit EPO (EuD), EuD/hydroxypropylmethyl cellulose E50 (HPMC), and PVP/EuD) were probed using in situ Raman imaging plus spectroscopy and molecular modeling techniques, and dissolution mechanism of Cur ASDs were revealed mainly through molecular and interfacial interactions formed between Cur and polymer. The results demonstrated that Cur of keto form existed in Cur-PEG, Cur of enol form was shown in Cur-PVP, while Cur-EuD or Cur ASDs formulated with EuD as component had Cur of keto form and enol form. Hydrogen bond interactions were formed between OH group (PEG, HPMC) with C═O (Cur), and C═O (PVP or EuD) with the OH group (Cur). For Cur ASDs formulated with single polymer, the existed form of Cur was possibly related with the molecular interactions formed between drug and polymer. The wetting effect of excipient and Cur ASDs as well as their fitting equations of contact angle profiles should be seriously considered when analyzing the dissolution mechanism of Cur ASDs. Furthermore, dissolution of Cur-EuD with erosion dissolution pattern was higher than Cur-PVP with diffusion mechanism, and their crystallization pathway can ascribe to solution pathway and solid matrix pathway, respectively. Last but not least, turbidimetry method was effective in determining which excipient was superior and evaluating the function of polymers, including their abilities to improve amorphous Cur loading, drug dissolution, and supersaturation levels. Therefore, both the probing of tautomeric Cur in ASDs at intermolecular level and elucidation of its dissolution mechanism has tremendous value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call