Abstract
The detection of similarities in source code has applications not only in software re-engineering (to eliminate redundancies) but also in software plagiarism detection. This later can be a challenging problem since more or less extensive edits may have been performed on the original copy: insertion or removal of useless chunks of code, rewriting of expressions, transposition of code, inlining and outlining of functions, etc. In this paper, we propose a new similarity detection technique not only based on token sequence matching but also on the factorization of the function call graphs. The factorization process merges shared chunks (factors) of codes to cope, in particular, with inlining and outlining. The resulting call graph offers a view of the similarities with their nesting relations. It is useful to infer metrics quantifying similarity at a function level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.