Abstract
In Multi-View Human Action Recognition, the actions are not of single view and hence to achieve an effective recognition performance under multi-view actions, there is a need of multi-view subclass discrimination analysis. Based on this inspiration, this paper proposed a novel action recognition framework based on the Subclass Discriminant Analysis (SDA), an extended version of Linear Discriminant Analysis (LDA). Further, a new key frames selection method is proposed based on Self-Similarity Matrix (SSM), called as Gradient SSM (GSSM). Once the key frames are selected, a composite feature set is extracted through three different set filters such as Gaussian Filter, Gabor filter and Wavelet Filter. Next, the SDA obtain an optimal feature subspace for every action under multiple Views. Finally the SVM algorithm classifies the action. The proposed framework is systematically evaluated on IXMAS dataset and NIXMAS dataset. Experimental results enumerate that our method outperforms the conventional techniques in terms of recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.