Abstract
Active learning (AL) seeks to interactively construct a smaller training data set that is the most informative and useful for the supervised classification task. Based on the multiview Adaptive Maximum Disagreement AL method, this study investigates the principles and capability of several approaches for the view generation for hyperspectral data classification, including clustering, random selection, and uniform subset slicing methods, which are then incorporated with dynamic view updating and feature space bagging strategies. Tests on Airborne Visible/Infrared Imaging Spectrometer and Hyperion hyperspectral data sets show excellent performance as compared with random sampling and the simple version support vector machine margin sampling, a state-of-the-art AL method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.