Abstract

We report the synthesis and supercritical drying of silica aerogels made via a sol–gel process. Tetramethylortosilicate has been used as precursor. Hydrolysis and poly-condensation steps were followed by carbon dioxide supercritical drying (T=45°C; P=10.5MPa). The complete supercritical drying step was video recorded in order to study the evolution of the size of the gels, concluding that a noticeable shrinkage only takes place during the decompression of CO2 at the end of the drying process, being the total shrinkage of 3–4%. The mass transfer mechanisms during drying have also been studied through analysis of the evolution transparency of the aerogels along the supercritical drying process. The mass transfer processing during drying was observed to be dominated by convection in the earliest stages, where a direct relationship between drying rate and CO2 flow were found. In the later stages, diffusion of the remaining organic solvent through the alcogel determined the mass transfer process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.